Formulas

Dot Product

$$(x_0, y_0) \cdot (x_1, y_1) = x_0 x_1 + y_0 y_1$$

= $|(x_0, y_0)| |x_1, y_1| \cos(\theta)$

$$\cos(\theta) = \frac{(x_0, y_0) \cdot (x_1, y_1)}{|(x_0, y_0)| |x_1, y_1|} = \frac{a \cdot b}{|a||b|}$$

 $a \cdot b > 0 \rightarrow \theta$ is acute

 $a \cdot b < 0 \rightarrow \theta$ is obtuse

 $a \cdot b = 0 \rightarrow \theta$ is right

$$(a+b) \cdot (c+d) = a \cdot c + b \cdot c + a \cdot d + b \cdot d$$

$$\operatorname{pro} j_b a = \frac{(a \cdot b)}{|b|^2} b = \left(a \cdot \frac{b}{|b|}\right) \frac{b}{|b|}$$

Lines

Standard Eq. of Line in \mathbb{R}^2 perpendicular to $\vec{n} = (a, b)$:

$$\vec{n} \cdot (x - x_0, y - y_0) = 0$$

Or equivalently,

$$a(x - x_0) + b(y - y_0) = 0$$

Vector Eq. of Line in \mathbb{R}^2 parallel to $\vec{v} = (a,b)$:

$$(x, y) = (x_0, y_0) + t\vec{v}$$

In \mathbb{R}^3 and $\vec{v} = (a, b, c)$ this generalizes to: $(x, y, z) = (x_0, y_0, z_0) + t\vec{v}$

For the standard parameterization of the *line segment*: $0 \le t \le 1$

The Parametric Eq. for a line can be found from the Vector Eq.

$$x = x_0 + ta$$

$$y = y_0 + tb$$

$$z = z_0 + tb$$

The Symmetric Eq. for a line is found

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Planes

Standard Eq. of Plane in \mathbb{R}^3 perpendicular to $\vec{n} = (a, b, c)$:

 $\vec{n} \cdot (x - x_0, y - y_0, z - z_0) = 0$ Or equivalently,

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Vector Eq. of Plane in \mathbb{R}^3 parallel to \vec{u} and \vec{v} (where $\vec{u} \times \vec{v} \neq 0$):

$$(x, y, z) = (x_0, y_0, z_0) + a\vec{u} + b\vec{v}$$

The Symmetric Eq. for a line is found

by solving for t:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Regular

$$\vec{\nabla} f \neq 0$$

Linearly Independent

$$\vec{u} \times \vec{v} \neq 0$$

Cross Product

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$(a,b,c) \times (c,d,e) = \begin{vmatrix} i & j & k \\ a & b & c \\ d & e & f \end{vmatrix} =$$

$$\vec{l} \begin{vmatrix} b & c \\ e & f \end{vmatrix} - \vec{j} \begin{vmatrix} a & c \\ d & f \end{vmatrix} + \vec{k} \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

 $|\vec{n} \times \vec{m}| = |\vec{n}| |\vec{m}| \sin(\theta)$

* Direction given by right-hand rule*

$$\begin{aligned} n\times m &= -m\times n\\ \vec{p}\times (a\vec{q}+b\vec{r}) &= a(\vec{p}\times\vec{q}) + b(\vec{p}\times\vec{r}) \end{aligned}$$

Partial Derivatives

$$\overline{f_{xy}} = f_{yx}$$

 $f_{xy} = f_{yx}$ if f_{xy} and f_{yx} are continuous

$$\vec{\nabla} f(x, y, z) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

Linear Approximation

 $f(\mathbf{x}) \approx f(p) + \overrightarrow{\nabla} f(p) \cdot (\mathbf{x} - p)$

Or as a linearization:

$$L_f(\mathbf{x}; p) = f(p) + \vec{\nabla} f(p) \cdot (\mathbf{x} - p),$$

$$f(\mathbf{x}) \approx L_f(\mathbf{x}; p)$$

In other words:

$$\Delta f \approx d_p f(\Delta x) = \vec{\nabla} f(p) \cdot (\nabla x)$$

The tangent plane (set) is:

$$z = L_f(\mathbf{x}; p)$$

Tangent Plane to Parametric Eq.

r(u,v) = (x(u,v), y(u,v), z(u,v))*show r_{ν} and r_{ν} are linearly independent* $(x, y, z) = p + a\overrightarrow{r_u}(u_0, v_0) + b\overrightarrow{r_v}(u_0, v_0)$

$$\vec{n} = r_u \times r_v \vec{n} \cdot ((x, y, z) - p) = 0$$

Hessian Determinant (for checking

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}_{p} = f_{xx}f_{yy} - f_{xy}^{2}$$

 $D > 0, f_{xx} > 0 \rightarrow local min.$

 $D > 0, f_{xx} < 0 \rightarrow local max.$

 $D < 0 \rightarrow saddle$

 $D = 0 \rightarrow degenerate$

Lagrange Multiplier

 $\vec{\nabla} f$ is the gradient of the original function. $\vec{\nabla} g$ is the gradient of the constraint function.

$$\vec{\nabla} f = \lambda \vec{\nabla} g$$

Basic Derivatives

$$\frac{d}{dx}(f+g) = f'+g'$$

$$\frac{d}{dx}(f*g) = f'g+fg'$$

$$\frac{d}{dx}(f/g) = \frac{f'g-g'f}{g^2}$$

$$\frac{d}{dx}(x^{\wedge}a) = ax^{a-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cos x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\cos^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\csc^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\cot^{-1}x) = \frac{1}{1+x^2}$$

Chain Rule for Partial Derivatives

$$\frac{\partial f}{\partial t} = \vec{\nabla} f(\mathbf{x}) \cdot \frac{\partial \mathbf{x}}{\partial t}$$

Or
$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t} + \cdots$$

Directional Derivative

 $*\vec{u}$ is a unit vector!*

$$D_{\vec{u}}f(p) = d_p f(\vec{u}) = \vec{\nabla} f(p) \cdot \vec{u}$$
$$= |\vec{\nabla} f(p)| \cos(\theta)$$